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s,singerg�
s.huji.a
.ilAbstra
t. In this paper we study online 
lassi�
ation algorithms formulti
lass problems in the mistake bound model. The hypotheses we usemaintain one prototype ve
tor per 
lass. Given an input instan
e, a mul-ti
lass hypothesis 
omputes a similarity-s
ore between ea
h prototypeand the input instan
e and then sets the predi
ted label to be the indexof the prototype a
hieving the highest similarity. To design and analyzethe learning algorithms in this paper we introdu
e the notion of ultra
on-servativeness. Ultra
onservative algorithms are algorithms that updateonly the prototypes attaining similarity-s
ores whi
h are higher than thes
ore of the 
orre
t label's prototype. We start by des
ribing a family ofadditive ultra
onservative algorithms where ea
h algorithm in the familyupdates its prototypes by �nding a feasible solution for a set of linear
onstraints that depend on the instantaneous similarity-s
ores. We thendis
uss a spe
i�
 online algorithm that seeks a set of prototypes whi
hhave a small norm. The resulting algorithm, whi
h we term MIRA (forMargin Infused Relaxed Algorithm) is ultra
onservative as well. We de-rive mistake bounds for all the algorithms and provide further analysis ofMIRA using a generalized notion of the margin for multi
lass problems.1 Introdu
tionIn this paper we present a general approa
h for deriving algorithms for multi
lasspredi
tion problems. In multi
lass problems the goal is to assign one of k labelsto ea
h input instan
e. Many ma
hine learning problems 
an be phrased as amulti
lass 
ategorization problem. Examples to su
h problems in
lude opti
al
hara
ter re
ognition (OCR), text 
lassi�
ation, and medi
al analysis. Thereare numerous spe
ialized solutions for multi
lass problems for spe
i�
 modelssu
h as de
ision trees [3, 16℄ and neural networks. Another general approa
h isbased on redu
ing a multi
lass problem to multiple binary problems using output
oding [6, 1℄. An example of a redu
tion that falls into the above framework isthe \one-against-rest" approa
h. In one-against-rest a set of binary 
lassi�ers istrained, one 
lassi�er for ea
h 
lass. The ith 
lassi�er is trained to distinguishbetween the ith 
lass and the rest of the 
lasses. New instan
es are 
lassi�ed bysetting the predi
ted label to be the index of the 
lassi�er attaining the highests
ore in its predi
tion. We present a uni�ed approa
h that operates dire
tly on
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the multi
lass problem by imposing 
onstraints on the updates for the various
lasses. Thus, our approa
h is inherently di�erent from methods based on output
oding.Our framework for analyzing the algorithms is the mistake bound model. Thealgorithms we study work in rounds. On ea
h round the proposed algorithms geta new instan
e and output a predi
tion for the instan
e. They then re
eive the
orre
t label and update their predi
ation rule in 
ase they made a predi
tionerror. The goal of the algorithms is to minimize the number of mistakes theymade 
ompared to the minimal number of errors that an hypothesis, built o�ine,
an a
hieve.The algorithms we 
onsider in this paper maintain one prototype ve
tor forea
h 
lass. Given a new instan
e we 
ompare ea
h prototype to the instan
e by
omputing the similarity-s
ore between the instan
e and ea
h of the prototypesfor the di�erent 
lasses. We then predi
t the 
lass whi
h a
hieves the highestsimilarity-s
ore. In binary problems, this s
heme redu
es (under mild 
onditions)to a linear dis
riminator. After the algorithm makes a predi
tion it re
eives the
orre
t label of the input instan
e and updates the set of prototypes. For a giveninput instan
e, the set of labels that attain similarity-s
ores higher than thes
ore of 
orre
t label is 
alled the error set. The algorithms we des
ribe sharea 
ommon feature: they all update only the prototypes from the error sets andthe prototype of the 
orre
t label. We 
all su
h algorithms ultra
onservative.We start in Se
. 3 in whi
h we provide a motivation for our framework. We dothat by revisiting the well known per
eptron algorithm and give a new a

ountof the algorithm using two prototype ve
tors, one for ea
h 
lass. We then extendthe algorithm to a multi
lass setting using the notion of ultra
onservativeness.In Se
. 4 we further generalize the multi
lass version of the extended per
eptronalgorithm and des
ribe a new family of ultra
onservative algorithms that weobtain by repla
ing the per
eptron's update with a set of linear equations. Wegive a few illustrative examples of spe
i�
 updates from this family of algorithms.Going ba
k to the per
eptron algorithm, we show that in the binary 
ase all thedi�erent updates redu
e to the per
eptron algorithm. We �nish Se
. 4 by derivinga mistake bound that is 
ommon to all the additive algorithms in the family. Weanalyze both the separable and the non-separable 
ase.The fa
t that all algorithms from Se
. 4 a
hieve the same mistake boundimplies that there are some undetermined degrees of freedom. We present inSe
. 5 a new online algorithm that gives a unique update and is based on arelaxation of the set of linear 
onstraints employed by the family of algorithmsfrom Se
. 4. The algorithm is derived by adding an obje
tive fun
tion thatin
orporates the norm of the new matrix of prototypes and minimizing it subje
tto a subset of the linear 
onstraints. Following re
ent trend, we 
all the newalgorithm MIRA for Margin Infused Relaxed Algorithm. We analyze MIRA andgive a mistake bound related to the instantaneous margin of individual examples.This analysis leads to modi�
ation of MIRA whi
h in
orporates the margin intothe update rule. Both MIRA and of the additive algorithms from Se
. 4 
an be
ombined with kernels te
hniques and voting methods.
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The algorithms presented in this paper unders
ore a general framework forderiving ultra
onservative multi
lass algorithms. This framework 
an be usedin 
ombination with other online te
hniques. To 
on
lude, we outline some ofour 
urrent resear
h dire
tions. Due to the la
k of spa
e many of the proofs andsome of the results have omitted. They will appear in a forth
oming long versionof this paper.Related Work Multi
lass extensions to binary approa
hes by maintaining mul-tiple prototypes are by no means new. The widely read and 
ited book byDuda and Hart [7℄ des
ribes a multi
lass extension to the per
eptron that em-ploys multiple ve
tors. However, dire
t methods for online learning of multi
lassproblems in the mistake bound model have re
eived relatively little attention.A question that is 
ommon to numerous online algorithms is how to 
ompro-mise the following two demands. On one hand, we want to update the 
lassi�erwe learn so that it will better predi
t the 
urrent input instan
e, in parti
ular ifan error o

urs when using the 
urrent 
lassi�er. On the other hand, we do notwant to 
hange the 
urrent 
lassi�er too radi
ally, espe
ially if it 
lassi�es wellmost of the previously observed instan
es. The good old per
eptron algorithmsuggested by Rosenblatt [17℄ 
opes with these two requirements by repla
ing the
lassi�er with a linear 
ombination of the 
urrent hyperplane and the 
urrent in-stan
e ve
tor. Although the algorithm uses a simple update rule, it performs wellon many syntheti
 and real-world problems. The per
eptron algorithm spurredvoluminous work whi
h 
learly 
annot be 
overed here. For an overview of nu-merous additive and multipli
ative online algorithms see the paper by Kivinenand Warmuth [12℄. We outline below some of the resear
h that is more relevantto the work presented in this paper.Kivinen and Warmuth [12℄ presented numerous online algorithms for regres-sion. Their algorithms are based on minimization of an obje
tive fun
tion whi
his a sum of two terms. The �rst term is equal to the distan
e between the new
lassi�er and the 
urrent 
lassi�er while the se
ond term is the loss on the 
urrentexample. The resulting update rule 
an be viewed as a gradient-des
ent method.Although multi
lass 
lassi�
ation problems are a spe
ial 
ase of regression prob-lems, the algorithms for regression put emphasis on smooth loss fun
tions whi
hmight not be suitable for 
lassi�
ation problems.The idea of seeking a hyperplane of a small norm is a primary goal in sup-port ve
tor ma
hines (SVM) [4, 18℄. Algorithms for 
onstru
ting support ve
torma
hines solve optimization problems with a quadrati
 obje
tive fun
tion andlinear 
onstraints. The work in [2, 9℄ suggests to minimize the obje
tive fun
-tion in a gradient-de
ent method, whi
h 
an be performed by going over thesample sequentially. Algorithms with a similar approa
h in
lude the SequentialMinimization Optimization (SMO) algorithm introdu
ed by Platt [15℄. SMOworks on rounds, on ea
h round it 
hooses two examples of the sample and min-imizes the obje
tive fun
tion by modifying variables relevant only to these twoexamples. While these algorithms share some similarities with the algorithmi
approa
hes des
ribed in this paper, they were all designed for bat
h problemsand were not analyzed in the mistake bound model.
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Another approa
h to the problem of designing an update rule whi
h resultsin a linear 
lassi�er of a small norm was suggested by Li and Long [13℄. Thealgorithm Li and Long proposed, 
alled ROMMA, ta
kles the problem by �nd-ing a hyperplane with a minimal norm under two linear 
onstraints. The �rst
onstraint is presented so that the new 
lassi�er will 
lassify well previous exam-ples, while the se
ond rule demands that the hyperplane will 
lassify 
orre
tlythe 
urrent new instan
e. Solving this minimization problem leads to an additiveupdate rule with adaptive 
oeÆ
ients.Grove, Littlestone and S
huurmans [11℄ introdu
ed a general framework ofquasi-additive binary algorithms, whi
h 
ontain the per
eptron and Winnow asspe
ial 
ases. In [10℄ Gentile proposed an extension to a subset of the quasi-additive algorithms, whi
h uses an additive 
onservative update rule with de-
reasing learning rates.The algorithms presented in this paper are reminis
ent of some of the widelyused methods for 
onstru
ting 
lassi�ers in multi
lass problems. As mentionedabove, a popular approa
h for solving 
lassi�
ation problems with many 
lassesis to learn a set of binary 
lassi�ers where ea
h 
lassi�er is designed to separateone 
lass from the rest of 
lasses. If we use the per
eptron algorithm to learn thebinary 
lassi�ers, we need to maintain and update one ve
tor for ea
h possible
lass. This approa
h shares the same form of hypothesis as the algorithms pre-sented in this paper, whi
h maintain one prototype per 
lass. Nonetheless, thereis one major di�eren
e between the ultra
onservative algorithms we present andthe one-against-rest approa
h. In one-against-rest we update and 
hange ea
h ofthe 
lassi�ers independently of the others. In fa
t we 
an 
onstru
t them one afterthe other by re-running over the data. In 
ontrast, ultra
onservative algorithmsupdate all the prototypes in tandem thus updating one prototype has a globale�e
t on the other prototypes. There are situations in whi
h there is an errordue to some 
lasses, but not all the respe
tive prototypes should be updated.Put another way, we might perform milder 
hanges to the set of 
lassi�ers by
hanging them together with the prototypes so as to a
hieve the same goal. Asa result we get better mistake bounds and empiri
ally better algorithms.2 PreliminariesThe fo
us of this paper is online algorithms for multi
lass predi
tion problems.We observe a sequen
e (�x1; y1); : : : ; (�xt; yt); : : : of instan
e-label pairs. Ea
h in-stan
e �xt is in Rn and ea
h label belongs to a �nite set Y of size k. We assumewithout loss of generality that Y = f1; 2; : : : ; kg. A multi
lass 
lassi�er is a fun
-tion H(�x) that maps instan
es from Rn into one of the possible labels in Y . Inthis paper we fo
us on 
lassi�ers of the form H(�x) = argmaxkr=1f �Mr � �xg, whereM is a k � n matrix over the reals and �Mr 2 Rn denotes the rth row of M. We
all the inner produ
t of �Mr with the instan
e �x, the similarity-s
ore for 
lassr. Thus, the 
lassi�ers we 
onsider in this paper set the label of an instan
e tobe the index of the row of M whi
h a
hieves the highest similarity-s
ore. Themargin of H on �x is the di�eren
e between the similarity-s
ore of the 
orre
t
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label y and the maximum among the similarity-s
ores of the rest of the rows ofM. Formally, the margin that M a
hieves on (�x; y) is,�My � �x�maxr 6=y f �Mr � �xg :The lp norm of a ve
tor �u = (u1; : : : ; ul) in Rl is k�ukp = �Pli=1 juijp� 1p . Wede�ne the lp ve
tor-norm of a matrix M to be the lp norm of the ve
tor we getby 
on
atenating the rows of M, that is,kMkp = k( �M1; : : : ; �Mk)kp :The framework that we use in this paper is the mistake bound model foronline learning. The algorithms we 
onsider work in rounds. On round t anonline learning algorithm gets an instan
e �xt. Given �xt, the learning algorithmoutputs a predi
tion, ŷt = argmaxrf �Mr � �xtg. It then re
eives the 
orre
t label ytand updates its 
lassi�
ation rule by modifying the matrix M. We say that thealgorithm made a (multi
lass) predi
tion error if ŷt 6= yt. Our goal is to make asfew predi
tion errors as possible. When the algorithm makes a predi
tion errorthere might be more than one row of M a
hieving a s
ore higher than the s
oreof the row 
orresponding to the 
orre
t label. We de�ne the error-set for (�x; y)using a matrix M to be the index of all the rows in M whi
h a
hieve su
h highs
ores. Formally, the error-set for a matrixM on an instan
e-label pair (�x; y) is,E = fr 6= y : �Mr � �x � �My � �xg :Many online algorithms update their predi
tion rule only on rounds on whi
hthey made a predi
tion error. Su
h algorithms are 
alled 
onservative. We givea de�nition that extends the notion of 
onservativeness to multi
lass settings.De�nition 1 (Ultra
onservative). An online multi
lass algorithm of the formH(�x) = argmaxrf �Mr � �xg is ultra
onservative if it modi�es M only when theerror-set E for (�x; y) is not empty and the indi
es of the rows that are modi�edare from E [ fyg.Note that our de�nition implies that an ultra
onservative algorithm is also
onservative. For binary problems the two de�nitions 
oin
ide.3 From binary to multi
lassRoseneblatt's per
eptron algorithm [17℄ is a well known online algorithm forbinary 
lassi�
ation problems. The algorithm maintains a weight ve
tor �w 2 Rnthat is used for predi
tion. To motivate our multi
lass algorithms let us nowdes
ribe the per
eptron algorithm using the notation employed in this paper. Inour setting the label of ea
h instan
e belongs to the set f1; 2g. Given an inputinstan
e �x the per
eptron algorithm predi
ts that its label is ŷ = 1 i� �w � �x � 0and otherwise it predi
ts ŷ = 2. The algorithm modi�es �w only on rounds with
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Fig. 1. A geometri
al illustration of the update for a binary problem (left) and a four-
lass problem (right) using the extended per
eptron algorithm.predi
tion errors and is thus 
onservative. On su
h rounds �w is 
hanged to �w+�xif the 
orre
t label is y = 1 and to �w � �x if y = 2.To implement the per
eptron algorithm using a prototype matrixM with onerow (prototype) per 
lass, we set the �rst row �M1 to �w and the se
ond row �M2to � �w. We now modify M every time the algorithm mis
lassi�es �x as follows. Ifthe 
orre
t label is 1 we repla
e �M1 with �M1+ �x and �M2 with �M2� �x. Similarly,we repla
e �M1 with �M1� �x and �M2 with �M2+ �x when the 
orre
t label is 2 and�x is mis
lassi�ed. Thus, the row �My is moved toward the mis
lassi�ed instan
e�x while the other row is moved away from �x. Note that this update implies thatthe total 
hange to the two prototypes is zero. An illustration of this geometri
alinterpretation is given on the left-hand side of Fig. 1. It is straightforward toverify that the algorithm is equivalent to the per
eptron algorithm.We 
an now use this interpretation and generalize the per
eptron algorithmto multi
lass problems as follows. For k 
lasses maintain a matrix M of k rows,one row per 
lass. For ea
h input instan
e �x, the multi
lass generalization of theper
eptron 
al
ulates the similarity-s
ore between the instan
e and ea
h of thek prototypes. The predi
ted label, ŷ, is the index of the row (prototype) of Mwhi
h a
hieves the highest s
ore, that is, ŷ = argmaxrf �Mr � �xg. If ŷ 6= y thealgorithm moves �My toward �x by repla
ing �My with �My + �x. In addition, thealgorithm moves ea
h row �Mr (r 6= y) for whi
h �Mr � �x � �My � �x away from �x.The indi
es of these rows 
onstitute the error set E. The algorithms presented inthis paper, and in parti
ular the multi
lass version of the per
eptron algorithm,modify M su
h that the following property holds: The total 
hange in units of �xin the rows of M that are moved away from �x is equal to the 
hange of �My, (inunits of �x). Spe
i�
ally, for the multi
lass per
eptron we repla
e �My with �My+�xand for ea
h r in E we repla
e �Mr with �Mr � �x=jEj. A geometri
 illustration ofthis update is given in the right-hand side of Fig. 1. There are four 
lasses in theexample appearing in the �gure. The 
orre
t label of �x is y = 1 and sin
e �M1is not the most similar ve
tor to �x, it is moved toward �x. The rows �M2 and �M3are also modi�ed by subtra
ting �x=2 from ea
h one. The last row �M4 is not in
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the error-set sin
e �M1 � �x > �M4 � �x and therefore it is not modi�ed. We defer theanalysis of the algorithm to the next se
tion in whi
h we des
ribe and analyzea family of online multi
lass algorithms that also in
ludes this algorithm.4 A family of additive multi
lass algorithmsWe des
ribe a family of ultra
onservative algorithms by using the algorithm ofthe previous se
tion as our starting point. The algorithm is ultra
onservative andthus updates M only on rounds with predi
tions errors. The row �My is 
hangedto �My + �x while for ea
h r 2 E we modify �Mr to �Mr � �x=jEj. Let us introdu
ea ve
tor of weights �� = (�1; : : : ; �k) and rewrite the update of the rth row as�Mr+ �r�x. Thus, for r = y we have �r = 1, for r 2 E we set �r = �1=jEj, and forr 62 E [ fyg; �r is zero. The weights �� were 
hosen su
h that the total 
hangeof the rows of M whose indi
es are from E are equal to the 
hange in �My, thatis, 1 = �y = �Pr2E �r. If we do not impose the 
ondition that for r 2 E all the�r's attain the same value, then the 
onstraints on �� be
ome Pr2E[fyg �r = 0.This 
onstraint enables us to move the prototypes from the error-set E awayfrom �x in di�erent proportions as long as the total 
hange is sum to one. Theresult is a whole family of multi
lass algorithms. A pseudo-
ode of the family ofalgorithms is provided in Fig. 2. Note that the 
onstraints on �� are redundantand we 
ould have used less 
onstraints. We make use of this more elaborate setof 
onstraints in the next se
tion.Before analyzing the family of algorithms we have just introdu
ed, we give afew examples of spe
i�
 s
hemes to set �� . We have already des
ribed one updateabove whi
h sets �� to, �r = 8<:� 1jEj r 2 E1 r = y0 otherwise :Sin
e all the � 's for rows in the error-set are equal, we 
all this the uniformmulti
lass update. We 
an also be further 
onservative and modify in additionto �My only one other row in M. A reasonable 
hoi
e is to modify the row thata
hieves the highest similarity-s
ore. That is, we set �� to,�r = 8<:�1 r = argmaxsf �Ms � �xg1 r = y0 otherwise :We 
all this form of updating �� the worst-margin multi
lass update. The twoexamples above set �r for r 2 E to a �xed value, ignoring the a
tual values ofsimilarity-s
ores ea
h row a
hieves. We 
an also set �� in promotion to the ex
essin the similarity-s
ore of ea
h row in the error set (with respe
t to �My). Forinstan
e, we 
an set �� to be,�r = (� [ �Mr ��x� �My��x℄+Pkr=1[ �Mr ��x� �M �y �x℄+ r 6= y1 r = y ;
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Initialize: Set M = 0 (M 2 Rk�n) .Loop: For t = 1; 2; : : : ; T{ Get a new instan
e �xt 2 Rn.{ Predi
t ŷt = arg kmaxr=1 f �Mr � �xtg.{ Get a new label yt.{ Set E = fr 6= yt : �Mr � �xt � �Myt � �xtg.{ If E 6= ; update M by 
hoosing any � t1; : : : ; � tk that satisfy:1. � tr � Ær;yt for r = 1; : : : ; k.2. Pkr=1 � tr = 0.3. � tr = 0 for r =2 E [ fytg.4. � tyt = 1.{ For r = 1; 2; : : : ; k update: �Mr  �Mr + � tr �xt .Output : H(�x) = argmaxrf �Mr � �xg.Fig. 2. A family of additive multi
lass algorithms.where [x℄+ is equal to x if x � 0 and zero otherwise. Note that the above updateimplies that �r = 0 for r 62 E [ fyg. We now pro
eed to analyze the algorithms.4.1 AnalysisIn the analysis of the algorithms of Fig. 2 we use the following auxiliary lemma.Lemma 1. For any set f�1; : : : ; �kg su
h that, Pkr=1 �r = 0 and �r � Ær;y forr = 1; : : : ; k, then Pr �2r � 2�y � 2 .We now give the main theorem of this se
tion.Theorem 1. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequen
e for any multi
lassalgorithm from the family des
ribed in Fig. 2 where �xt 2 Rn and yt 2 f1; 2; : : : ; kg.Denote by R2 = maxt k�xtk2. Assume that there is a matrix M� of a unitve
tor-norm, kM�k = 1, that 
lassi�es the entire sequen
e 
orre
tly with margin
 = mintf �M�yt � �xt �maxr 6=yt �M�r � �xtg > 0. Then, the number of mistakes thatthe algorithm makes is at most 2R2=
2.Proof. Assume that an error o

urred when 
lassifying the tth example (�xt; yt)using the matrixM. Denote byM0 the updated matrix after round t. That is, forr = 1; 2; : : : ; k we have �M 0r = �Mr + � tr �xt. To prove the theorem we bound kMk22from above and below. First, we derive a lower bound on kMk2 by bounding theterm, kXr=1 �M�r � �M 0r = kXr=1 �M�r � ( �Mr + � tr �xt)= kXr=1 �M�r � �Mr +Xr � tr � �M�r � �xt� : (1)
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We further develop the se
ond term of Eq. (1) using the se
ond 
onstraint of thealgorithm �Pkr=1 � tr = 0�. Substituting �yt = �Pr 6=yt � tr we get,Xr � tr � �M�r � �xt� = Xr 6=yt � tr � �M�r � �xt�+ �yt � �M�yt � �xt�= Xr 6=yt � tr � �M�r � �xt��Xr 6=yt � tr � �M�yt � �xt�= Xr 6=yt ��� tr� � �M�yt � �M�r � � �xt : (2)Using the assumption that M� 
lassi�es ea
h instan
e with a margin of at least
 and that �y = 1 (fourth 
onstraint) we obtain,Xr � tr � �M�r � �xt� � Xr 6=yt ��� tr� 
 = � tyt
 = 
 : (3)Combining Eq. (1) and Eq. (3) we get,Pr �M�r � �M 0r �Pr �M�r � �Mr + 
. Thus, ifthe algorithm made m mistakes in T rounds then the matrix M satis�es,Xr �M�r � �Mr � m
 (4)Using the ve
tor-norm de�nition and applying the Cau
hy-S
hwartz inequalitywe get,kMk2kM�k2 = �Pkr=1 k �Mrk2��Pkr=1 k �M�r k2�� � �M1 � �M�1 + : : :+ �Mk � �M�k �2 = �Pkr=1 �Mr � �M�r �2 : (5)Plugging Eq. (4) into Eq. (5) and using the assumption that M� is of a unitve
tor-norm we get the following lower bound,kMk2 � m2
2 : (6)Next, we bound the ve
tor-norm of M from above. As before, assume that anerror o

urred when 
lassifying the example (�xt; yt) using the matrix M anddenote by M0 the matrix after the update. Then,kM0k2 =Xr k �M 0rk2 =Xr k �Mr + � tr �xtk2=Xr k �Mrk2 + 2Xr � tr � �Mr � �xt�+Xr k� tr �xtk2= kMk2 + 2Xr � tr � �Mr � �xt�+ k�xtk2Xr (� tr)2 : (7)We further develop the se
ond term using the se
ond 
onstraint of the algorithmand analogously to Eq. (2) we get,Xr � tr � �Mr � �xt� = Xr 6=yt(�� tr) � �Myt � �Mr� � �xt :
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Sin
e �xt was mis
lassi�ed we need to 
onsider the following two 
ases. The �rst
ase is when the label r was not the sour
e of the error, that is ( �Myt� �Mr)��xt > 0.Then, using the third 
onstraint (r =2 E [ fytg ) � tr = 0) we get that � tr = 0 andthus (�� tr) � �Myt � �Mr� � �xt = 0. The se
ond 
ase is when one of the sour
es oferror was the label r. In that 
ase ( �Myt � �Mr) � �xt � 0. Using the �rst 
onstraintof the algorithm we know that � tr � 0 and thus (�� tr) � �Myt � �Mr� � �xt � 0.Finally, summing over all r we get,Xr � tr � �Mr � �xt� � 0 : (8)Plugging Eq. (8) into Eq. (7) we get, kM0k2 � kMk2+k�xtk2Pr(� tr)2. Using thebound k�xtk2 � R2 and Lemma 1 we obtain,kM0k2 � kMk2 + 2kRk2 : (9)Thus, if the algorithm made m mistakes in T rounds, the matrix M satis�es,kMk2 � 2mkRk2 : (10)Combining Eq. (6) and Eq. (10), we have that, m2
2 � kMk2 � 2mkRk2 ; andtherefore, m � 2R2=
2.We would like to note that the bound of the above theorem redu
es to theper
eptrons mistake bound in the binary 
ase (k = 2). To 
on
lude this se
tionwe analyze the non-separable 
ase by generalizing Thm. 2 of Freund and S
hapire[8℄ to a multi
lass setting.Theorem 2. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequen
e for any multi
lassalgorithm from the family des
ribed in Fig. 2, where �xt 2 Rn and yt 2 f1; 2; : : : ; kg.Denote by R2 = maxt k�xtk2. Let M� be a prototype matrix of a unit ve
tor-norm, kM�k = 1, and de�ne, dt = maxn0; 
 � h �M�yt � �xt �maxr 6=yt �M�r � �xtio.Denote by D2 = PTt=1(dt)2 and �x some 
 > 0. Then the number of mistakesthe algorithm makes is at most 2(R+D)2=
2.Proof. The 
ase D = 0 follows from Thm. 1 thus we 
an assume that D > 0.The theorem is proved by transforming the non-separable setting to a separableone. To do so, we extend ea
h instan
e �xt 2 Rn to �zt 2 Rn+T as follows. The�rst n 
oordinates of �zt are set to �xt. The n+ t 
oordinate of �zt is set to �,whi
h is a positive real number whose value is determined later; the rest ofthe 
oordinates of �zt are set to zero. We similarly extend the matrix M� toW� 2 Rk�(n+T ) as follows. We set the �rst n 
olumnsW� to be 1ZM�. For ea
hrow r we set W �r;n+t to dtZ� if yt = r and zero otherwise. We 
hoose the valueof Z so that kW�k2 = 1, hen
e, 1 = kW�k22 = 1Z2 �1 + D2�2 � whi
h gives that,Z =q1 + D2�2 . We now show that W� a
hieves a margin of 
Z on the extended
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data sequen
e. Note that for all r and t, �W �r � �zt = 1Z � �M�r � �xt + Ær;ytdt�. Now,using the de�nition of dt we get,�W �yt � �zt �maxr 6=yt � �W �r � �zt	 = 1Z � �M�yt � �xt + dt��maxr 6=yt � 1Z � �M�r � �xt��= 1Z dt + 1Z � �M�yt � �xt �maxr 6=yt � �M�r � �xt	�� 1Z �
 � � �M�yt � �xt �maxr 6=yt � �M�r � �xt	��+ 1Z � �M�yt � �xt �maxr 6=yt � �M�r � �xt	�= 
Z : (11)We also have that, k�ztk2 = k�xtk2 +�2 � R2 +�2 : (12)In summary, Eq. (11) and Eq. (12) imply that the sequen
e (�z1; y1); : : : ; (�zT ; yT )is 
lassi�ed 
orre
tly with margin 
Z and ea
h instan
e �zt is bounded above byR2 +�2. Thus, we 
an use Thm. 1 and 
on
lude that the number of mistakesthat the algorithm makes on (�z1; y1); : : : ; (�zT ; yT ) is bounded from above by,2R2 +�2� 
Z �2 : (13)Minimizing Eq. (13) over � we get that the optimal value for � is pDR andthe tightest mistake bound is, 2(D + R)2=
2. To 
omplete the proof we showthat the predi
tion of the algorithm in the extended spa
e and in the originalspa
e are equal. Namely, let Mt and Wt be the value of the parameter matrixjust before re
eiving �xt and �zt, respe
tively. We need to show that the following
onditions hold for t = 1; : : : ; T :1. The �rst n 
olumns of Wt are equal to Mt.2. The (n+t)th 
olumn of Wt is equal zero.3. �M tr � �xt = �W tr � �zt for r = 1; : : : ; k.The proof of these 
onditions is straightforward by indu
tion on t.5 A norm-optimized multi
lass algorithmIn the previous se
tion we have des
ribed a family of algorithms where ea
halgorithm of the family a
hieves the same mistake bound given by Thm. 1 andThm. 2. This variety of equivalent algorithms suggests that there are some de-grees of freedom that we might be able to exploit. In this se
tion we des
ribe anonline algorithm that 
hooses a feasible ve
tor �� t su
h that the ve
tor-norm ofthe matrix M will be as small as possible.
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Initialize: Set M 6= 0 M 2 Rk�n.Loop: For t = 1; 2; : : : ; T{ Get a new instan
e �xt.{ Predi
t ŷt = argmaxrf �Mr � �xtg.{ Get a new label yt.{ Find �� t that solves the following optimization problem:min��12 Pr k �Mr + �r �xtk22subje
t to : (1) �r � Ær;yt for r = 1; : : : ; k(2) Pkr=1 �r = 0{ Update : �Mr  �Mr + � tr �xt for r = 1; 2; : : : ; k .Output : H(�x) = argmaxrf �Mr � �xg.Fig. 3. The Margin Infused Relaxed Algorithm (MIRA).To derive the new algorithm we omit the fourth 
onstraint (�y = 1) and thusallow more 
exibility in 
hoosing �� t, or smaller 
hanges in the prototype ma-trix. Previous bounds provides motivation for the algorithms in this se
tion. We
hoose a ve
tor �� t whi
h minimizes the ve
tor-norm of the new matrixM subje
tto the �rst two 
onstraints only. As we show in the sequel, the solution of theoptimization problem automati
ally satis�es the third 
onstraint. The algorithmattempts to update the matrixM on ea
h round regardless of whether there wasa predi
tion error or not. We show below that the algorithm is ultra
onservativeand thus �� t is the zero ve
tor if �xt is 
orre
tly 
lassi�ed (and no update takespla
e). Following the trend set by Li and Long [13℄ and Gentile [10℄, we termour algorithm MIRA for Margin Infused Relaxed Algorithm. The algorithm isdes
ribed in Fig. 3.Before investigating the properties of the algorithm, we rewrite the opti-mization problem that MIRA solves on ea
h round in a more 
onvenient form.Omitting the example index t the obje
tive fun
tion be
omes,12Xr k �Mr + �r�xk2 = 12Xr k �Mrk2 +Xr �r � �Mr � �x�+ 12Xr �2r k�xk2 :Omitting 12Pr k �Mrk2 whi
h is 
onstant, the quadrati
 optimization problembe
omes, min� Q(�) = 12A kXr=1 �2r + kXr=1Br�r (14)subje
t to : 8r �r � Ær;y and Pr �r = 0where, A = k�xk2 and Br = �Mr � �x : (15)
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Sin
e Q is a quadrati
 fun
tion, and thus 
onvex, and the 
onstraints are linear,the problem has a unique solution.We now show that MIRA automati
ally satis�es the third 
onstraint of thefamily of algorithms from Se
. 4, whi
h implies that it is ultra
onservative. Weuse the following auxiliary lemma.Lemma 2. Let �� be the optimal solution of the 
onstrained optimization problemgiven by Eq. (14) for an instan
e-label pair (�x; y). For ea
h r 6= y su
h thatBr � By we have �r = 0.The lemma implies that if a label r is not a sour
e of error, then the rth pro-totype, �Mr, is not updated after (�x; y) has been observed. In other words, thesolution of Eq. (14) satis�es that �r = 0 for all r 6= y with � �Mr � �x � �My � �x�.Corollary 1. MIRA is ultra
onservative.Proof. Let (�x; y) be a new example fed to the algorithm. And let �� be the
oeÆ
ients found by the algorithm. From Lemma 2 we get that for ea
h label rwhose s
ore ( �Mr � �x) is not larger than the s
ore of the 
orre
t label ( �My � �x) its
orresponding value �r is set to zero. This implies that only the indi
es whi
hbelong to the set E [ fyg = fr 6= y : �Mr � �x � �My � �xg [ fyg may be updated.Furthermore, if the algorithm predi
ts 
orre
tly that the label is y, we get thatE = ; and �r = 0 for all r 6= y. In this 
ase �y is set to zero due to the 
onstraintPr �r = �y +Pr 6=y �r = 0. Hen
e, �� = 0 and the algorithm does not modify Mon (�x; y). Thus, the 
onditions required for ultra
onservativeness are satis�ed.In Se
. 5.2 we give a detailed analysis of MIRA that in
orporates the margina
hieved on ea
h example, and 
an be used to derive a mistake bound. Let us�rst show that the 
umulative l1-norm of the 
oeÆ
ients �� t is bounded.Theorem 3. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequen
e to MIRA where�xt 2 Rn and yt 2 f1; 2; : : : ; kg. Let R = maxt k�xtk2 and assume that there is aprototype matrixM� of a unit ve
tor-norm, kM�k = 1, whi
h 
lassi�es the entiresequen
e 
orre
tly with margin 
 = mintf �M�yt � �xt�maxr 6=yt �M�r � �xtg > 0. Let �� tbe the 
oeÆ
ients that MIRA �nds for (�xt; yt). Then, PTt=1 k�� tk1 � 4R2=
2.The proof is omitted due to la
k of spa
e.5.1 Chara
teristi
s of the solutionLet us now further examine the 
hara
teristi
s of the solution obtained by MIRA.In [5℄ we investigated a related setting that uses error 
orre
ting output 
odesfor multi
lass problems. Using the results from [5℄ it is simple to show that theoptimal �� in Eq. (14) is given by�r = minf�� � BrA ; Æy;rg (16)
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where A = k�xk2 and Br = �Mr � �x is the similarity-s
ore of (�x; y) for label r, asde�ned by Eq. (15). The optimal value �� is uniquely de�ned by the equality
onstraintPr �r = 0 of Eq. (14) and satis�es,Pkr=1minf��� BrA ; Æy;rg = 0. Wenow 
an view MIRA in the following alternative light. Assume that the instan
e(�x; y) was mis
lassi�ed by MIRA and set E = fr 6= y : �Mr � �x � �My � �xg 6= ;.The similarity-s
ore for label r of the new matrix on the 
urrent instan
e �x is,� �Mr + � �x� � �x = Br + �rA : (17)Plugging Eq. (16) into Eq. (17) we get that the similarity-s
ore for 
lass r on the
urrent instan
e is, minfA��; Br+AÆy;rg. Sin
e �r � Æy;r, the maximal similaritys
ore the updated matrix 
an attain on �x is Br + AÆr;y. Thus, the similarity-s
ore for 
lass r after the update is either a 
onstant that is 
ommon to all
lasses, A��, or the largest similarity-s
ore the 
lass r 
an attain, Br + AÆr;y.The 
onstant A�� pla
es an upper bound on the similarity-s
ore for all 
lassesafter the update. This bound is tight, that is at least one similarity-s
ore valueis equal to A��.5.2 Margin analysis of MIRAIn this se
tion we further analyze MIRA by relating its mistake bound to theinstantaneous margin of the individual examples. The margin analysis we presentin this se
tion sheds some more light on the sour
e of diÆ
ulty in a
hieving amistake bound for MIRA. Our analysis here also leads to an alternative versionof MIRA that in
orporates the margin into the quadrati
 optimization problemthat we need to solve on ea
h round. Our starting point is Thm. 3. We �rst givea lower bound on �y on ea
h round. If MIRA made a mistake on (�x; y), then weknow that maxr 6=y Br � By > 0. Therefore, we 
an bound the minimal value of�y by a fun
tion of the (negative) margin, By �maxr 6=y Br.Lemma 3. Let �� be the optimal solution of the 
onstrained optimization problemgiven by Eq. (14) for an instan
e-label pair (�x; y) with A � R2. Assume that themargin By�maxr 6=y Br is bounded from above by ��, where 0 < � � 2R2. Then�y is at least �=(2R2).We would like to note that for the above lemma if � � 2R2 then �y = 1 regardlessof the margin a
hieved. We are now ready to prove the main result of this se
tion.Theorem 4. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequen
e to MIRA where�xt 2 Rn and yt 2 f1; 2; : : : ; kg. Denote by R = maxt k�xtk and assume that thereis a prototype matrix M� of a unit ve
tor-norm, kM�k2 = 1, whi
h 
lassi�es theentire sequen
e 
orre
tly with margin 
 = mintf �M�yt � �xt�maxr 6=yt �M�r � �xtg > 0.Denote by n� the number of rounds for whi
h Byt�maxr 6=yt Br � ��, for some0 < � � 2R2. Then the following bound holds, n� � 4R4=(�
2).Proof. The proof is a simple appli
ation of Thm. 3 and Lemma 3. Using these
ond 
onstraint of MIRA (Pr �r = 0) and Thm. 3 we get that,TXt=1 � tyt � 2R2
2 : (18)
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From Lemma 3 we know that whenever maxr 6=yt Br �Byt � � then 1 � 2R2� � tytand therefore, n� � TXt=1 2R2� � tyt : (19)Combining Eq. (18) and Eq. (19) we obtain the required bound,n� � 2R2� TXt=1 � tyt � 2R2� 2R2
2 � 4 R4�
2 :Note that Thm. 4 still does not provide a mistake bound for MIRA sin
e in thelimit of � ! 0 the bound diverges. Note also that for � = 2R2 the bound redu
esto the bounds of Thm. 1 and Thm. 3. The sour
e of the diÆ
ulty in obtaining amistake bound is rounds on whi
h MIRA a
hieves a small negative margin andthus makes small 
hanges to M. On su
h rounds �y 
an be arbitrarily small andwe 
annot translate the bound on Pt � tyt into a mistake bound. This impliesthat MIRA is not robust to small 
hanges in the input instan
es. We thereforedes
ribe now a simple modi�
ation to MIRA for whi
h we 
an prove a mistakebound and, as we will see later, performs better empiri
ally.The modi�ed MIRA aggressively updates M on every round for whi
h themargin is smaller than some prede�ned value denoted again by �. This te
hniqueis by no means new, see for instan
e [13℄. The result is a mixed algorithm whi
his both aggressive and ultra
onservative. On one hand, the algorithm updatesMwhenever a minimal margin is not a
hieved, in
luding rounds on whi
h (�x; y) is
lassi�ed 
orre
tly but with a small margin. On the other hand, on ea
h updateof M only the rows whose 
orresponding similarity-s
ores are mistakenly toohigh are updated. We now des
ribe how to modify MIRA along these lines.To a
hieve a minimal margin of at least � � 2R2 we modify the optimizationproblem given by Eq. (14). A minimal margin of � is a
hieved if for all r werequire �My ��x� �Mr ��x � � or, alternatively, ( �My ��x��)�( �Mr ��x) � 0. Thus, if werepla
e By with By��,M will be updated whenever the margin is smaller than�. We thus let MIRA solve for ea
h example (�x; y) the following 
onstrainedoptimization problem,min� Q(�) = 12 ~A kXr=1 �2r + kXr=1 ~Br�r (20)subje
t to : 8r �r � Ær;y and Pr �r = 0where : ~A = A = k�xk2 ; ~Br = Br � �Æy;r = �Mr � �x� �Æy;r :To get a mistake bound for this modi�ed version of MIRA we apply Thm. 4almost verbatim by repla
ing Br with ~Br in the theorem. Note that if ~By �maxr 6=y ~Br � �� then By���maxr 6=y Br � �� and hen
e By�maxr 6=y Br � 0.Therefore, for any 0 � � � 2R2 we get that the number of mistakes of the
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modi�ed algorithm is equal to n� whi
h is bounded by 4R4=�
2. This gives thefollowing 
orollary.Corollary 2. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequen
e to the aggressiveversion of MIRA with margin �, where �xt 2 Rn and yt 2 f1; 2; : : : ; kg. Denote byR = maxt k�xtk and assume that there is a prototype matrix M� of a unit ve
tor-norm, kM�k2 = 1, whi
h 
lassi�es the entire sequen
e 
orre
tly with margin
 = mintf �M�yt � �xt � maxr 6=yt �M�r � �xtg > 0. Then, the number of mistakes thealgorithm makes is bounded above by, 4R4=(�
2) :Note that the bound is a de
reasing fun
tion of �. This means that the moreaggressive we are by requiring a minimal margin the smaller the bound on thenumber of mistakes the aggressively modi�ed MIRA makes. However, this alsoimplies that the algorithm will update M more often and the solution will beless sparse.6 Dis
ussion and 
urrent resear
h dire
tionsIn this paper we des
ribed a general framework for deriving ultra
onservativealgorithms for multi
lass 
ategorization problems and analyzed the proposedalgorithms in the mistake bound model. We investigated in detail an additivefamily of online algorithms. The entire family redu
es to the per
eptron algo-rithm in the binary 
ase. In addition, we gave a method for 
hoosing a uniquemember of the family by imposing a quadrati
 obje
tive fun
tion that minimizesthe norm of the prototype matrix after ea
h update. Note that the similarity-s
ore of a new instan
e is a linear 
ombination of inner-produ
ts between pairsof instan
es. Therefore, all the algorithms we presented 
an be straightforwardly
ombined with kernel methods [18℄.An interesting dire
tion we are 
urrently working on is 
ombining our frame-work with other online learning algorithms for binary problems. Spe
i�
ally,we have been able to 
ombine Winnow [14℄ and Li and Long's ROMMA algo-rithm [13℄ with our framework, and to 
onstru
t a multi
lass version for thosealgorithms. A question that remains open is how to impose 
onstraints similarto the one MIRA employs in both 
ases.An interesting question in this 
ase is whether our framework 
an be 
om-bined with the family of quasi-additive binary algorithms of Grove, Littlestoneand S
huurmans [11℄ and other p-norm algorithms [10℄. Another interesting di-re
tion that generalizes our framework is algorithms that maintain multiple pro-totypes per 
lass. It is not 
lear in this 
ase what form the updates should take.We have performed preliminary experiments on syntheti
 data that show theadvantages in using our proposed framework over previously studied online al-gorithms for multi
lass problems. A 
omplete des
ription of the results obtainedin the various experiments will appear in a forth
oming full version.A 
urrent resear
h dire
tion we are pursuing is methods for redu
ing thenumber of updates MIRA performs, and thus the number of instan
es that areused in building the 
lassi�er. We are 
urrently working on the design of o post
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pro
essing stage of the algorithms. Combining the algorithms presented in thispaper with a post pro
essing 
an be used in bat
h setting. Preliminary resultsshow that this dire
tion may give a viable algorithmi
 alternative for buildingsupport ve
tor ma
hines.A
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