
www.manaraa.com

Ultraonservative Online Algorithms forMultilass ProblemsKoby Crammer1 and Yoram Singer1Shool of Computer Siene & EngineeringThe Hebrew University, Jerusalem 91904, Israelfkobis,singerg�s.huji.a.ilAbstrat. In this paper we study online lassi�ation algorithms formultilass problems in the mistake bound model. The hypotheses we usemaintain one prototype vetor per lass. Given an input instane, a mul-tilass hypothesis omputes a similarity-sore between eah prototypeand the input instane and then sets the predited label to be the indexof the prototype ahieving the highest similarity. To design and analyzethe learning algorithms in this paper we introdue the notion of ultraon-servativeness. Ultraonservative algorithms are algorithms that updateonly the prototypes attaining similarity-sores whih are higher than thesore of the orret label's prototype. We start by desribing a family ofadditive ultraonservative algorithms where eah algorithm in the familyupdates its prototypes by �nding a feasible solution for a set of linearonstraints that depend on the instantaneous similarity-sores. We thendisuss a spei� online algorithm that seeks a set of prototypes whihhave a small norm. The resulting algorithm, whih we term MIRA (forMargin Infused Relaxed Algorithm) is ultraonservative as well. We de-rive mistake bounds for all the algorithms and provide further analysis ofMIRA using a generalized notion of the margin for multilass problems.1 IntrodutionIn this paper we present a general approah for deriving algorithms for multilasspredition problems. In multilass problems the goal is to assign one of k labelsto eah input instane. Many mahine learning problems an be phrased as amultilass ategorization problem. Examples to suh problems inlude optialharater reognition (OCR), text lassi�ation, and medial analysis. Thereare numerous speialized solutions for multilass problems for spei� modelssuh as deision trees [3, 16℄ and neural networks. Another general approah isbased on reduing a multilass problem to multiple binary problems using outputoding [6, 1℄. An example of a redution that falls into the above framework isthe \one-against-rest" approah. In one-against-rest a set of binary lassi�ers istrained, one lassi�er for eah lass. The ith lassi�er is trained to distinguishbetween the ith lass and the rest of the lasses. New instanes are lassi�ed bysetting the predited label to be the index of the lassi�er attaining the highestsore in its predition. We present a uni�ed approah that operates diretly on
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the multilass problem by imposing onstraints on the updates for the variouslasses. Thus, our approah is inherently di�erent from methods based on outputoding.Our framework for analyzing the algorithms is the mistake bound model. Thealgorithms we study work in rounds. On eah round the proposed algorithms geta new instane and output a predition for the instane. They then reeive theorret label and update their prediation rule in ase they made a preditionerror. The goal of the algorithms is to minimize the number of mistakes theymade ompared to the minimal number of errors that an hypothesis, built o�ine,an ahieve.The algorithms we onsider in this paper maintain one prototype vetor foreah lass. Given a new instane we ompare eah prototype to the instane byomputing the similarity-sore between the instane and eah of the prototypesfor the di�erent lasses. We then predit the lass whih ahieves the highestsimilarity-sore. In binary problems, this sheme redues (under mild onditions)to a linear disriminator. After the algorithm makes a predition it reeives theorret label of the input instane and updates the set of prototypes. For a giveninput instane, the set of labels that attain similarity-sores higher than thesore of orret label is alled the error set. The algorithms we desribe sharea ommon feature: they all update only the prototypes from the error sets andthe prototype of the orret label. We all suh algorithms ultraonservative.We start in Se. 3 in whih we provide a motivation for our framework. We dothat by revisiting the well known pereptron algorithm and give a new aountof the algorithm using two prototype vetors, one for eah lass. We then extendthe algorithm to a multilass setting using the notion of ultraonservativeness.In Se. 4 we further generalize the multilass version of the extended pereptronalgorithm and desribe a new family of ultraonservative algorithms that weobtain by replaing the pereptron's update with a set of linear equations. Wegive a few illustrative examples of spei� updates from this family of algorithms.Going bak to the pereptron algorithm, we show that in the binary ase all thedi�erent updates redue to the pereptron algorithm. We �nish Se. 4 by derivinga mistake bound that is ommon to all the additive algorithms in the family. Weanalyze both the separable and the non-separable ase.The fat that all algorithms from Se. 4 ahieve the same mistake boundimplies that there are some undetermined degrees of freedom. We present inSe. 5 a new online algorithm that gives a unique update and is based on arelaxation of the set of linear onstraints employed by the family of algorithmsfrom Se. 4. The algorithm is derived by adding an objetive funtion thatinorporates the norm of the new matrix of prototypes and minimizing it subjetto a subset of the linear onstraints. Following reent trend, we all the newalgorithm MIRA for Margin Infused Relaxed Algorithm. We analyze MIRA andgive a mistake bound related to the instantaneous margin of individual examples.This analysis leads to modi�ation of MIRA whih inorporates the margin intothe update rule. Both MIRA and of the additive algorithms from Se. 4 an beombined with kernels tehniques and voting methods.
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The algorithms presented in this paper undersore a general framework forderiving ultraonservative multilass algorithms. This framework an be usedin ombination with other online tehniques. To onlude, we outline some ofour urrent researh diretions. Due to the lak of spae many of the proofs andsome of the results have omitted. They will appear in a forthoming long versionof this paper.Related Work Multilass extensions to binary approahes by maintaining mul-tiple prototypes are by no means new. The widely read and ited book byDuda and Hart [7℄ desribes a multilass extension to the pereptron that em-ploys multiple vetors. However, diret methods for online learning of multilassproblems in the mistake bound model have reeived relatively little attention.A question that is ommon to numerous online algorithms is how to ompro-mise the following two demands. On one hand, we want to update the lassi�erwe learn so that it will better predit the urrent input instane, in partiular ifan error ours when using the urrent lassi�er. On the other hand, we do notwant to hange the urrent lassi�er too radially, espeially if it lassi�es wellmost of the previously observed instanes. The good old pereptron algorithmsuggested by Rosenblatt [17℄ opes with these two requirements by replaing thelassi�er with a linear ombination of the urrent hyperplane and the urrent in-stane vetor. Although the algorithm uses a simple update rule, it performs wellon many syntheti and real-world problems. The pereptron algorithm spurredvoluminous work whih learly annot be overed here. For an overview of nu-merous additive and multipliative online algorithms see the paper by Kivinenand Warmuth [12℄. We outline below some of the researh that is more relevantto the work presented in this paper.Kivinen and Warmuth [12℄ presented numerous online algorithms for regres-sion. Their algorithms are based on minimization of an objetive funtion whihis a sum of two terms. The �rst term is equal to the distane between the newlassi�er and the urrent lassi�er while the seond term is the loss on the urrentexample. The resulting update rule an be viewed as a gradient-desent method.Although multilass lassi�ation problems are a speial ase of regression prob-lems, the algorithms for regression put emphasis on smooth loss funtions whihmight not be suitable for lassi�ation problems.The idea of seeking a hyperplane of a small norm is a primary goal in sup-port vetor mahines (SVM) [4, 18℄. Algorithms for onstruting support vetormahines solve optimization problems with a quadrati objetive funtion andlinear onstraints. The work in [2, 9℄ suggests to minimize the objetive fun-tion in a gradient-deent method, whih an be performed by going over thesample sequentially. Algorithms with a similar approah inlude the SequentialMinimization Optimization (SMO) algorithm introdued by Platt [15℄. SMOworks on rounds, on eah round it hooses two examples of the sample and min-imizes the objetive funtion by modifying variables relevant only to these twoexamples. While these algorithms share some similarities with the algorithmiapproahes desribed in this paper, they were all designed for bath problemsand were not analyzed in the mistake bound model.
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Another approah to the problem of designing an update rule whih resultsin a linear lassi�er of a small norm was suggested by Li and Long [13℄. Thealgorithm Li and Long proposed, alled ROMMA, takles the problem by �nd-ing a hyperplane with a minimal norm under two linear onstraints. The �rstonstraint is presented so that the new lassi�er will lassify well previous exam-ples, while the seond rule demands that the hyperplane will lassify orretlythe urrent new instane. Solving this minimization problem leads to an additiveupdate rule with adaptive oeÆients.Grove, Littlestone and Shuurmans [11℄ introdued a general framework ofquasi-additive binary algorithms, whih ontain the pereptron and Winnow asspeial ases. In [10℄ Gentile proposed an extension to a subset of the quasi-additive algorithms, whih uses an additive onservative update rule with de-reasing learning rates.The algorithms presented in this paper are reminisent of some of the widelyused methods for onstruting lassi�ers in multilass problems. As mentionedabove, a popular approah for solving lassi�ation problems with many lassesis to learn a set of binary lassi�ers where eah lassi�er is designed to separateone lass from the rest of lasses. If we use the pereptron algorithm to learn thebinary lassi�ers, we need to maintain and update one vetor for eah possiblelass. This approah shares the same form of hypothesis as the algorithms pre-sented in this paper, whih maintain one prototype per lass. Nonetheless, thereis one major di�erene between the ultraonservative algorithms we present andthe one-against-rest approah. In one-against-rest we update and hange eah ofthe lassi�ers independently of the others. In fat we an onstrut them one afterthe other by re-running over the data. In ontrast, ultraonservative algorithmsupdate all the prototypes in tandem thus updating one prototype has a globale�et on the other prototypes. There are situations in whih there is an errordue to some lasses, but not all the respetive prototypes should be updated.Put another way, we might perform milder hanges to the set of lassi�ers byhanging them together with the prototypes so as to ahieve the same goal. Asa result we get better mistake bounds and empirially better algorithms.2 PreliminariesThe fous of this paper is online algorithms for multilass predition problems.We observe a sequene (�x1; y1); : : : ; (�xt; yt); : : : of instane-label pairs. Eah in-stane �xt is in Rn and eah label belongs to a �nite set Y of size k. We assumewithout loss of generality that Y = f1; 2; : : : ; kg. A multilass lassi�er is a fun-tion H(�x) that maps instanes from Rn into one of the possible labels in Y . Inthis paper we fous on lassi�ers of the form H(�x) = argmaxkr=1f �Mr � �xg, whereM is a k � n matrix over the reals and �Mr 2 Rn denotes the rth row of M. Weall the inner produt of �Mr with the instane �x, the similarity-sore for lassr. Thus, the lassi�ers we onsider in this paper set the label of an instane tobe the index of the row of M whih ahieves the highest similarity-sore. Themargin of H on �x is the di�erene between the similarity-sore of the orret
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label y and the maximum among the similarity-sores of the rest of the rows ofM. Formally, the margin that M ahieves on (�x; y) is,�My � �x�maxr 6=y f �Mr � �xg :The lp norm of a vetor �u = (u1; : : : ; ul) in Rl is k�ukp = �Pli=1 juijp� 1p . Wede�ne the lp vetor-norm of a matrix M to be the lp norm of the vetor we getby onatenating the rows of M, that is,kMkp = k( �M1; : : : ; �Mk)kp :The framework that we use in this paper is the mistake bound model foronline learning. The algorithms we onsider work in rounds. On round t anonline learning algorithm gets an instane �xt. Given �xt, the learning algorithmoutputs a predition, ŷt = argmaxrf �Mr � �xtg. It then reeives the orret label ytand updates its lassi�ation rule by modifying the matrix M. We say that thealgorithm made a (multilass) predition error if ŷt 6= yt. Our goal is to make asfew predition errors as possible. When the algorithm makes a predition errorthere might be more than one row of M ahieving a sore higher than the soreof the row orresponding to the orret label. We de�ne the error-set for (�x; y)using a matrix M to be the index of all the rows in M whih ahieve suh highsores. Formally, the error-set for a matrixM on an instane-label pair (�x; y) is,E = fr 6= y : �Mr � �x � �My � �xg :Many online algorithms update their predition rule only on rounds on whihthey made a predition error. Suh algorithms are alled onservative. We givea de�nition that extends the notion of onservativeness to multilass settings.De�nition 1 (Ultraonservative). An online multilass algorithm of the formH(�x) = argmaxrf �Mr � �xg is ultraonservative if it modi�es M only when theerror-set E for (�x; y) is not empty and the indies of the rows that are modi�edare from E [ fyg.Note that our de�nition implies that an ultraonservative algorithm is alsoonservative. For binary problems the two de�nitions oinide.3 From binary to multilassRoseneblatt's pereptron algorithm [17℄ is a well known online algorithm forbinary lassi�ation problems. The algorithm maintains a weight vetor �w 2 Rnthat is used for predition. To motivate our multilass algorithms let us nowdesribe the pereptron algorithm using the notation employed in this paper. Inour setting the label of eah instane belongs to the set f1; 2g. Given an inputinstane �x the pereptron algorithm predits that its label is ŷ = 1 i� �w � �x � 0and otherwise it predits ŷ = 2. The algorithm modi�es �w only on rounds with
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Fig. 1. A geometrial illustration of the update for a binary problem (left) and a four-lass problem (right) using the extended pereptron algorithm.predition errors and is thus onservative. On suh rounds �w is hanged to �w+�xif the orret label is y = 1 and to �w � �x if y = 2.To implement the pereptron algorithm using a prototype matrixM with onerow (prototype) per lass, we set the �rst row �M1 to �w and the seond row �M2to � �w. We now modify M every time the algorithm mislassi�es �x as follows. Ifthe orret label is 1 we replae �M1 with �M1+ �x and �M2 with �M2� �x. Similarly,we replae �M1 with �M1� �x and �M2 with �M2+ �x when the orret label is 2 and�x is mislassi�ed. Thus, the row �My is moved toward the mislassi�ed instane�x while the other row is moved away from �x. Note that this update implies thatthe total hange to the two prototypes is zero. An illustration of this geometrialinterpretation is given on the left-hand side of Fig. 1. It is straightforward toverify that the algorithm is equivalent to the pereptron algorithm.We an now use this interpretation and generalize the pereptron algorithmto multilass problems as follows. For k lasses maintain a matrix M of k rows,one row per lass. For eah input instane �x, the multilass generalization of thepereptron alulates the similarity-sore between the instane and eah of thek prototypes. The predited label, ŷ, is the index of the row (prototype) of Mwhih ahieves the highest sore, that is, ŷ = argmaxrf �Mr � �xg. If ŷ 6= y thealgorithm moves �My toward �x by replaing �My with �My + �x. In addition, thealgorithm moves eah row �Mr (r 6= y) for whih �Mr � �x � �My � �x away from �x.The indies of these rows onstitute the error set E. The algorithms presented inthis paper, and in partiular the multilass version of the pereptron algorithm,modify M suh that the following property holds: The total hange in units of �xin the rows of M that are moved away from �x is equal to the hange of �My, (inunits of �x). Spei�ally, for the multilass pereptron we replae �My with �My+�xand for eah r in E we replae �Mr with �Mr � �x=jEj. A geometri illustration ofthis update is given in the right-hand side of Fig. 1. There are four lasses in theexample appearing in the �gure. The orret label of �x is y = 1 and sine �M1is not the most similar vetor to �x, it is moved toward �x. The rows �M2 and �M3are also modi�ed by subtrating �x=2 from eah one. The last row �M4 is not in
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the error-set sine �M1 � �x > �M4 � �x and therefore it is not modi�ed. We defer theanalysis of the algorithm to the next setion in whih we desribe and analyzea family of online multilass algorithms that also inludes this algorithm.4 A family of additive multilass algorithmsWe desribe a family of ultraonservative algorithms by using the algorithm ofthe previous setion as our starting point. The algorithm is ultraonservative andthus updates M only on rounds with preditions errors. The row �My is hangedto �My + �x while for eah r 2 E we modify �Mr to �Mr � �x=jEj. Let us introduea vetor of weights �� = (�1; : : : ; �k) and rewrite the update of the rth row as�Mr+ �r�x. Thus, for r = y we have �r = 1, for r 2 E we set �r = �1=jEj, and forr 62 E [ fyg; �r is zero. The weights �� were hosen suh that the total hangeof the rows of M whose indies are from E are equal to the hange in �My, thatis, 1 = �y = �Pr2E �r. If we do not impose the ondition that for r 2 E all the�r's attain the same value, then the onstraints on �� beome Pr2E[fyg �r = 0.This onstraint enables us to move the prototypes from the error-set E awayfrom �x in di�erent proportions as long as the total hange is sum to one. Theresult is a whole family of multilass algorithms. A pseudo-ode of the family ofalgorithms is provided in Fig. 2. Note that the onstraints on �� are redundantand we ould have used less onstraints. We make use of this more elaborate setof onstraints in the next setion.Before analyzing the family of algorithms we have just introdued, we give afew examples of spei� shemes to set �� . We have already desribed one updateabove whih sets �� to, �r = 8<:� 1jEj r 2 E1 r = y0 otherwise :Sine all the � 's for rows in the error-set are equal, we all this the uniformmultilass update. We an also be further onservative and modify in additionto �My only one other row in M. A reasonable hoie is to modify the row thatahieves the highest similarity-sore. That is, we set �� to,�r = 8<:�1 r = argmaxsf �Ms � �xg1 r = y0 otherwise :We all this form of updating �� the worst-margin multilass update. The twoexamples above set �r for r 2 E to a �xed value, ignoring the atual values ofsimilarity-sores eah row ahieves. We an also set �� in promotion to the exessin the similarity-sore of eah row in the error set (with respet to �My). Forinstane, we an set �� to be,�r = (� [ �Mr ��x� �My��x℄+Pkr=1[ �Mr ��x� �M �y �x℄+ r 6= y1 r = y ;



www.manaraa.com

Initialize: Set M = 0 (M 2 Rk�n) .Loop: For t = 1; 2; : : : ; T{ Get a new instane �xt 2 Rn.{ Predit ŷt = arg kmaxr=1 f �Mr � �xtg.{ Get a new label yt.{ Set E = fr 6= yt : �Mr � �xt � �Myt � �xtg.{ If E 6= ; update M by hoosing any � t1; : : : ; � tk that satisfy:1. � tr � Ær;yt for r = 1; : : : ; k.2. Pkr=1 � tr = 0.3. � tr = 0 for r =2 E [ fytg.4. � tyt = 1.{ For r = 1; 2; : : : ; k update: �Mr  �Mr + � tr �xt .Output : H(�x) = argmaxrf �Mr � �xg.Fig. 2. A family of additive multilass algorithms.where [x℄+ is equal to x if x � 0 and zero otherwise. Note that the above updateimplies that �r = 0 for r 62 E [ fyg. We now proeed to analyze the algorithms.4.1 AnalysisIn the analysis of the algorithms of Fig. 2 we use the following auxiliary lemma.Lemma 1. For any set f�1; : : : ; �kg suh that, Pkr=1 �r = 0 and �r � Ær;y forr = 1; : : : ; k, then Pr �2r � 2�y � 2 .We now give the main theorem of this setion.Theorem 1. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequene for any multilassalgorithm from the family desribed in Fig. 2 where �xt 2 Rn and yt 2 f1; 2; : : : ; kg.Denote by R2 = maxt k�xtk2. Assume that there is a matrix M� of a unitvetor-norm, kM�k = 1, that lassi�es the entire sequene orretly with margin = mintf �M�yt � �xt �maxr 6=yt �M�r � �xtg > 0. Then, the number of mistakes thatthe algorithm makes is at most 2R2=2.Proof. Assume that an error ourred when lassifying the tth example (�xt; yt)using the matrixM. Denote byM0 the updated matrix after round t. That is, forr = 1; 2; : : : ; k we have �M 0r = �Mr + � tr �xt. To prove the theorem we bound kMk22from above and below. First, we derive a lower bound on kMk2 by bounding theterm, kXr=1 �M�r � �M 0r = kXr=1 �M�r � ( �Mr + � tr �xt)= kXr=1 �M�r � �Mr +Xr � tr � �M�r � �xt� : (1)
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We further develop the seond term of Eq. (1) using the seond onstraint of thealgorithm �Pkr=1 � tr = 0�. Substituting �yt = �Pr 6=yt � tr we get,Xr � tr � �M�r � �xt� = Xr 6=yt � tr � �M�r � �xt�+ �yt � �M�yt � �xt�= Xr 6=yt � tr � �M�r � �xt��Xr 6=yt � tr � �M�yt � �xt�= Xr 6=yt ��� tr� � �M�yt � �M�r � � �xt : (2)Using the assumption that M� lassi�es eah instane with a margin of at least and that �y = 1 (fourth onstraint) we obtain,Xr � tr � �M�r � �xt� � Xr 6=yt ��� tr�  = � tyt =  : (3)Combining Eq. (1) and Eq. (3) we get,Pr �M�r � �M 0r �Pr �M�r � �Mr + . Thus, ifthe algorithm made m mistakes in T rounds then the matrix M satis�es,Xr �M�r � �Mr � m (4)Using the vetor-norm de�nition and applying the Cauhy-Shwartz inequalitywe get,kMk2kM�k2 = �Pkr=1 k �Mrk2��Pkr=1 k �M�r k2�� � �M1 � �M�1 + : : :+ �Mk � �M�k �2 = �Pkr=1 �Mr � �M�r �2 : (5)Plugging Eq. (4) into Eq. (5) and using the assumption that M� is of a unitvetor-norm we get the following lower bound,kMk2 � m22 : (6)Next, we bound the vetor-norm of M from above. As before, assume that anerror ourred when lassifying the example (�xt; yt) using the matrix M anddenote by M0 the matrix after the update. Then,kM0k2 =Xr k �M 0rk2 =Xr k �Mr + � tr �xtk2=Xr k �Mrk2 + 2Xr � tr � �Mr � �xt�+Xr k� tr �xtk2= kMk2 + 2Xr � tr � �Mr � �xt�+ k�xtk2Xr (� tr)2 : (7)We further develop the seond term using the seond onstraint of the algorithmand analogously to Eq. (2) we get,Xr � tr � �Mr � �xt� = Xr 6=yt(�� tr) � �Myt � �Mr� � �xt :
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Sine �xt was mislassi�ed we need to onsider the following two ases. The �rstase is when the label r was not the soure of the error, that is ( �Myt� �Mr)��xt > 0.Then, using the third onstraint (r =2 E [ fytg ) � tr = 0) we get that � tr = 0 andthus (�� tr) � �Myt � �Mr� � �xt = 0. The seond ase is when one of the soures oferror was the label r. In that ase ( �Myt � �Mr) � �xt � 0. Using the �rst onstraintof the algorithm we know that � tr � 0 and thus (�� tr) � �Myt � �Mr� � �xt � 0.Finally, summing over all r we get,Xr � tr � �Mr � �xt� � 0 : (8)Plugging Eq. (8) into Eq. (7) we get, kM0k2 � kMk2+k�xtk2Pr(� tr)2. Using thebound k�xtk2 � R2 and Lemma 1 we obtain,kM0k2 � kMk2 + 2kRk2 : (9)Thus, if the algorithm made m mistakes in T rounds, the matrix M satis�es,kMk2 � 2mkRk2 : (10)Combining Eq. (6) and Eq. (10), we have that, m22 � kMk2 � 2mkRk2 ; andtherefore, m � 2R2=2.We would like to note that the bound of the above theorem redues to thepereptrons mistake bound in the binary ase (k = 2). To onlude this setionwe analyze the non-separable ase by generalizing Thm. 2 of Freund and Shapire[8℄ to a multilass setting.Theorem 2. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequene for any multilassalgorithm from the family desribed in Fig. 2, where �xt 2 Rn and yt 2 f1; 2; : : : ; kg.Denote by R2 = maxt k�xtk2. Let M� be a prototype matrix of a unit vetor-norm, kM�k = 1, and de�ne, dt = maxn0;  � h �M�yt � �xt �maxr 6=yt �M�r � �xtio.Denote by D2 = PTt=1(dt)2 and �x some  > 0. Then the number of mistakesthe algorithm makes is at most 2(R+D)2=2.Proof. The ase D = 0 follows from Thm. 1 thus we an assume that D > 0.The theorem is proved by transforming the non-separable setting to a separableone. To do so, we extend eah instane �xt 2 Rn to �zt 2 Rn+T as follows. The�rst n oordinates of �zt are set to �xt. The n+ t oordinate of �zt is set to �,whih is a positive real number whose value is determined later; the rest ofthe oordinates of �zt are set to zero. We similarly extend the matrix M� toW� 2 Rk�(n+T ) as follows. We set the �rst n olumnsW� to be 1ZM�. For eahrow r we set W �r;n+t to dtZ� if yt = r and zero otherwise. We hoose the valueof Z so that kW�k2 = 1, hene, 1 = kW�k22 = 1Z2 �1 + D2�2 � whih gives that,Z =q1 + D2�2 . We now show that W� ahieves a margin of Z on the extended
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data sequene. Note that for all r and t, �W �r � �zt = 1Z � �M�r � �xt + Ær;ytdt�. Now,using the de�nition of dt we get,�W �yt � �zt �maxr 6=yt � �W �r � �zt	 = 1Z � �M�yt � �xt + dt��maxr 6=yt � 1Z � �M�r � �xt��= 1Z dt + 1Z � �M�yt � �xt �maxr 6=yt � �M�r � �xt	�� 1Z � � � �M�yt � �xt �maxr 6=yt � �M�r � �xt	��+ 1Z � �M�yt � �xt �maxr 6=yt � �M�r � �xt	�= Z : (11)We also have that, k�ztk2 = k�xtk2 +�2 � R2 +�2 : (12)In summary, Eq. (11) and Eq. (12) imply that the sequene (�z1; y1); : : : ; (�zT ; yT )is lassi�ed orretly with margin Z and eah instane �zt is bounded above byR2 +�2. Thus, we an use Thm. 1 and onlude that the number of mistakesthat the algorithm makes on (�z1; y1); : : : ; (�zT ; yT ) is bounded from above by,2R2 +�2� Z �2 : (13)Minimizing Eq. (13) over � we get that the optimal value for � is pDR andthe tightest mistake bound is, 2(D + R)2=2. To omplete the proof we showthat the predition of the algorithm in the extended spae and in the originalspae are equal. Namely, let Mt and Wt be the value of the parameter matrixjust before reeiving �xt and �zt, respetively. We need to show that the followingonditions hold for t = 1; : : : ; T :1. The �rst n olumns of Wt are equal to Mt.2. The (n+t)th olumn of Wt is equal zero.3. �M tr � �xt = �W tr � �zt for r = 1; : : : ; k.The proof of these onditions is straightforward by indution on t.5 A norm-optimized multilass algorithmIn the previous setion we have desribed a family of algorithms where eahalgorithm of the family ahieves the same mistake bound given by Thm. 1 andThm. 2. This variety of equivalent algorithms suggests that there are some de-grees of freedom that we might be able to exploit. In this setion we desribe anonline algorithm that hooses a feasible vetor �� t suh that the vetor-norm ofthe matrix M will be as small as possible.



www.manaraa.com

Initialize: Set M 6= 0 M 2 Rk�n.Loop: For t = 1; 2; : : : ; T{ Get a new instane �xt.{ Predit ŷt = argmaxrf �Mr � �xtg.{ Get a new label yt.{ Find �� t that solves the following optimization problem:min��12 Pr k �Mr + �r �xtk22subjet to : (1) �r � Ær;yt for r = 1; : : : ; k(2) Pkr=1 �r = 0{ Update : �Mr  �Mr + � tr �xt for r = 1; 2; : : : ; k .Output : H(�x) = argmaxrf �Mr � �xg.Fig. 3. The Margin Infused Relaxed Algorithm (MIRA).To derive the new algorithm we omit the fourth onstraint (�y = 1) and thusallow more exibility in hoosing �� t, or smaller hanges in the prototype ma-trix. Previous bounds provides motivation for the algorithms in this setion. Wehoose a vetor �� t whih minimizes the vetor-norm of the new matrixM subjetto the �rst two onstraints only. As we show in the sequel, the solution of theoptimization problem automatially satis�es the third onstraint. The algorithmattempts to update the matrixM on eah round regardless of whether there wasa predition error or not. We show below that the algorithm is ultraonservativeand thus �� t is the zero vetor if �xt is orretly lassi�ed (and no update takesplae). Following the trend set by Li and Long [13℄ and Gentile [10℄, we termour algorithm MIRA for Margin Infused Relaxed Algorithm. The algorithm isdesribed in Fig. 3.Before investigating the properties of the algorithm, we rewrite the opti-mization problem that MIRA solves on eah round in a more onvenient form.Omitting the example index t the objetive funtion beomes,12Xr k �Mr + �r�xk2 = 12Xr k �Mrk2 +Xr �r � �Mr � �x�+ 12Xr �2r k�xk2 :Omitting 12Pr k �Mrk2 whih is onstant, the quadrati optimization problembeomes, min� Q(�) = 12A kXr=1 �2r + kXr=1Br�r (14)subjet to : 8r �r � Ær;y and Pr �r = 0where, A = k�xk2 and Br = �Mr � �x : (15)
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Sine Q is a quadrati funtion, and thus onvex, and the onstraints are linear,the problem has a unique solution.We now show that MIRA automatially satis�es the third onstraint of thefamily of algorithms from Se. 4, whih implies that it is ultraonservative. Weuse the following auxiliary lemma.Lemma 2. Let �� be the optimal solution of the onstrained optimization problemgiven by Eq. (14) for an instane-label pair (�x; y). For eah r 6= y suh thatBr � By we have �r = 0.The lemma implies that if a label r is not a soure of error, then the rth pro-totype, �Mr, is not updated after (�x; y) has been observed. In other words, thesolution of Eq. (14) satis�es that �r = 0 for all r 6= y with � �Mr � �x � �My � �x�.Corollary 1. MIRA is ultraonservative.Proof. Let (�x; y) be a new example fed to the algorithm. And let �� be theoeÆients found by the algorithm. From Lemma 2 we get that for eah label rwhose sore ( �Mr � �x) is not larger than the sore of the orret label ( �My � �x) itsorresponding value �r is set to zero. This implies that only the indies whihbelong to the set E [ fyg = fr 6= y : �Mr � �x � �My � �xg [ fyg may be updated.Furthermore, if the algorithm predits orretly that the label is y, we get thatE = ; and �r = 0 for all r 6= y. In this ase �y is set to zero due to the onstraintPr �r = �y +Pr 6=y �r = 0. Hene, �� = 0 and the algorithm does not modify Mon (�x; y). Thus, the onditions required for ultraonservativeness are satis�ed.In Se. 5.2 we give a detailed analysis of MIRA that inorporates the marginahieved on eah example, and an be used to derive a mistake bound. Let us�rst show that the umulative l1-norm of the oeÆients �� t is bounded.Theorem 3. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequene to MIRA where�xt 2 Rn and yt 2 f1; 2; : : : ; kg. Let R = maxt k�xtk2 and assume that there is aprototype matrixM� of a unit vetor-norm, kM�k = 1, whih lassi�es the entiresequene orretly with margin  = mintf �M�yt � �xt�maxr 6=yt �M�r � �xtg > 0. Let �� tbe the oeÆients that MIRA �nds for (�xt; yt). Then, PTt=1 k�� tk1 � 4R2=2.The proof is omitted due to lak of spae.5.1 Charateristis of the solutionLet us now further examine the harateristis of the solution obtained by MIRA.In [5℄ we investigated a related setting that uses error orreting output odesfor multilass problems. Using the results from [5℄ it is simple to show that theoptimal �� in Eq. (14) is given by�r = minf�� � BrA ; Æy;rg (16)
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where A = k�xk2 and Br = �Mr � �x is the similarity-sore of (�x; y) for label r, asde�ned by Eq. (15). The optimal value �� is uniquely de�ned by the equalityonstraintPr �r = 0 of Eq. (14) and satis�es,Pkr=1minf��� BrA ; Æy;rg = 0. Wenow an view MIRA in the following alternative light. Assume that the instane(�x; y) was mislassi�ed by MIRA and set E = fr 6= y : �Mr � �x � �My � �xg 6= ;.The similarity-sore for label r of the new matrix on the urrent instane �x is,� �Mr + � �x� � �x = Br + �rA : (17)Plugging Eq. (16) into Eq. (17) we get that the similarity-sore for lass r on theurrent instane is, minfA��; Br+AÆy;rg. Sine �r � Æy;r, the maximal similaritysore the updated matrix an attain on �x is Br + AÆr;y. Thus, the similarity-sore for lass r after the update is either a onstant that is ommon to alllasses, A��, or the largest similarity-sore the lass r an attain, Br + AÆr;y.The onstant A�� plaes an upper bound on the similarity-sore for all lassesafter the update. This bound is tight, that is at least one similarity-sore valueis equal to A��.5.2 Margin analysis of MIRAIn this setion we further analyze MIRA by relating its mistake bound to theinstantaneous margin of the individual examples. The margin analysis we presentin this setion sheds some more light on the soure of diÆulty in ahieving amistake bound for MIRA. Our analysis here also leads to an alternative versionof MIRA that inorporates the margin into the quadrati optimization problemthat we need to solve on eah round. Our starting point is Thm. 3. We �rst givea lower bound on �y on eah round. If MIRA made a mistake on (�x; y), then weknow that maxr 6=y Br � By > 0. Therefore, we an bound the minimal value of�y by a funtion of the (negative) margin, By �maxr 6=y Br.Lemma 3. Let �� be the optimal solution of the onstrained optimization problemgiven by Eq. (14) for an instane-label pair (�x; y) with A � R2. Assume that themargin By�maxr 6=y Br is bounded from above by ��, where 0 < � � 2R2. Then�y is at least �=(2R2).We would like to note that for the above lemma if � � 2R2 then �y = 1 regardlessof the margin ahieved. We are now ready to prove the main result of this setion.Theorem 4. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequene to MIRA where�xt 2 Rn and yt 2 f1; 2; : : : ; kg. Denote by R = maxt k�xtk and assume that thereis a prototype matrix M� of a unit vetor-norm, kM�k2 = 1, whih lassi�es theentire sequene orretly with margin  = mintf �M�yt � �xt�maxr 6=yt �M�r � �xtg > 0.Denote by n� the number of rounds for whih Byt�maxr 6=yt Br � ��, for some0 < � � 2R2. Then the following bound holds, n� � 4R4=(�2).Proof. The proof is a simple appliation of Thm. 3 and Lemma 3. Using theseond onstraint of MIRA (Pr �r = 0) and Thm. 3 we get that,TXt=1 � tyt � 2R22 : (18)
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From Lemma 3 we know that whenever maxr 6=yt Br �Byt � � then 1 � 2R2� � tytand therefore, n� � TXt=1 2R2� � tyt : (19)Combining Eq. (18) and Eq. (19) we obtain the required bound,n� � 2R2� TXt=1 � tyt � 2R2� 2R22 � 4 R4�2 :Note that Thm. 4 still does not provide a mistake bound for MIRA sine in thelimit of � ! 0 the bound diverges. Note also that for � = 2R2 the bound reduesto the bounds of Thm. 1 and Thm. 3. The soure of the diÆulty in obtaining amistake bound is rounds on whih MIRA ahieves a small negative margin andthus makes small hanges to M. On suh rounds �y an be arbitrarily small andwe annot translate the bound on Pt � tyt into a mistake bound. This impliesthat MIRA is not robust to small hanges in the input instanes. We thereforedesribe now a simple modi�ation to MIRA for whih we an prove a mistakebound and, as we will see later, performs better empirially.The modi�ed MIRA aggressively updates M on every round for whih themargin is smaller than some prede�ned value denoted again by �. This tehniqueis by no means new, see for instane [13℄. The result is a mixed algorithm whihis both aggressive and ultraonservative. On one hand, the algorithm updatesMwhenever a minimal margin is not ahieved, inluding rounds on whih (�x; y) islassi�ed orretly but with a small margin. On the other hand, on eah updateof M only the rows whose orresponding similarity-sores are mistakenly toohigh are updated. We now desribe how to modify MIRA along these lines.To ahieve a minimal margin of at least � � 2R2 we modify the optimizationproblem given by Eq. (14). A minimal margin of � is ahieved if for all r werequire �My ��x� �Mr ��x � � or, alternatively, ( �My ��x��)�( �Mr ��x) � 0. Thus, if wereplae By with By��,M will be updated whenever the margin is smaller than�. We thus let MIRA solve for eah example (�x; y) the following onstrainedoptimization problem,min� Q(�) = 12 ~A kXr=1 �2r + kXr=1 ~Br�r (20)subjet to : 8r �r � Ær;y and Pr �r = 0where : ~A = A = k�xk2 ; ~Br = Br � �Æy;r = �Mr � �x� �Æy;r :To get a mistake bound for this modi�ed version of MIRA we apply Thm. 4almost verbatim by replaing Br with ~Br in the theorem. Note that if ~By �maxr 6=y ~Br � �� then By���maxr 6=y Br � �� and hene By�maxr 6=y Br � 0.Therefore, for any 0 � � � 2R2 we get that the number of mistakes of the
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modi�ed algorithm is equal to n� whih is bounded by 4R4=�2. This gives thefollowing orollary.Corollary 2. Let (�x1; y1); : : : ; (�xT ; yT ) be an input sequene to the aggressiveversion of MIRA with margin �, where �xt 2 Rn and yt 2 f1; 2; : : : ; kg. Denote byR = maxt k�xtk and assume that there is a prototype matrix M� of a unit vetor-norm, kM�k2 = 1, whih lassi�es the entire sequene orretly with margin = mintf �M�yt � �xt � maxr 6=yt �M�r � �xtg > 0. Then, the number of mistakes thealgorithm makes is bounded above by, 4R4=(�2) :Note that the bound is a dereasing funtion of �. This means that the moreaggressive we are by requiring a minimal margin the smaller the bound on thenumber of mistakes the aggressively modi�ed MIRA makes. However, this alsoimplies that the algorithm will update M more often and the solution will beless sparse.6 Disussion and urrent researh diretionsIn this paper we desribed a general framework for deriving ultraonservativealgorithms for multilass ategorization problems and analyzed the proposedalgorithms in the mistake bound model. We investigated in detail an additivefamily of online algorithms. The entire family redues to the pereptron algo-rithm in the binary ase. In addition, we gave a method for hoosing a uniquemember of the family by imposing a quadrati objetive funtion that minimizesthe norm of the prototype matrix after eah update. Note that the similarity-sore of a new instane is a linear ombination of inner-produts between pairsof instanes. Therefore, all the algorithms we presented an be straightforwardlyombined with kernel methods [18℄.An interesting diretion we are urrently working on is ombining our frame-work with other online learning algorithms for binary problems. Spei�ally,we have been able to ombine Winnow [14℄ and Li and Long's ROMMA algo-rithm [13℄ with our framework, and to onstrut a multilass version for thosealgorithms. A question that remains open is how to impose onstraints similarto the one MIRA employs in both ases.An interesting question in this ase is whether our framework an be om-bined with the family of quasi-additive binary algorithms of Grove, Littlestoneand Shuurmans [11℄ and other p-norm algorithms [10℄. Another interesting di-retion that generalizes our framework is algorithms that maintain multiple pro-totypes per lass. It is not lear in this ase what form the updates should take.We have performed preliminary experiments on syntheti data that show theadvantages in using our proposed framework over previously studied online al-gorithms for multilass problems. A omplete desription of the results obtainedin the various experiments will appear in a forthoming full version.A urrent researh diretion we are pursuing is methods for reduing thenumber of updates MIRA performs, and thus the number of instanes that areused in building the lassi�er. We are urrently working on the design of o post
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